Search Results/Filters    

Filters

Year

Banks




Expert Group











Full-Text


Issue Info: 
  • Year: 

    2022
  • Volume: 

    19
  • Issue: 

    2
  • Pages: 

    1-11
Measures: 
  • Citations: 

    0
  • Views: 

    63
  • Downloads: 

    12
Abstract: 

Potholes on roads are regarded as serious problems in the transportation domain, and ignoring them lead to an increase in accidents, traffic, vehicle fuel consumption, and waste of time and energy. As a result, pothole detection has attracted researchers’ attention, and different methods have been presented for it up to now. Data analysis methods such as machine learning and Soft computing have been widely used for detection purposes. They rely on a dataset and propose a system that can detect a special event in similar datasets. Their effectiveness can be measured by evaluating their accuracy in detecting the event. Image processing involves a wide range of analytics that are used to extract specific information from images. The majority of image processing programs require massive computational power. The major part of previous research is based on image processing. They utilize dedicated cameras which are embedded in vehicles to take images and analyze them through massive image processing programs. This scheme requires dedicated hardware that is not typically available on vehicles. In this paper, a new scheme is proposed, which uses accelerometer and GPS sensors. These types of sensors are available in today’s smartphones as well as modern vehicles. The data generated by these sensors is processed via Soft computing to increase the accuracy of pothole detection. The proposed algorithm uses a combination of a fuzzy system and evolutionary algorithms. Fuzzy systems have been widely used to model the real-world problems that are described by uncertainty and ambiguity. Evolutionary algorithms (e. g., genetic algorithms) try to imitate evolutionary science in solving hard problems. Genetic algorithm and harmony search are used to adjust membership functions of the proposed fuzzy system. For evaluation, a case study has been conducted with regard to detect potholes on Ghaffari Street in Birjand. To this end, a real dataset has been collected and used for implementing the proposed method. Experimental results show the high accuracy of the proposed algorithm in comparison to other solutions. They reveal that the accuracy of the proposed genetic fuzzy algorithm is 98 percent and for the proposed harmony fuzzy algorithm is 99 percent.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 63

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 12 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

GHOLIZADEH S. | SALAJEGHEH E.

Issue Info: 
  • Year: 

    2011
  • Volume: 

    12
  • Issue: 

    4
  • Pages: 

    415-429
Measures: 
  • Citations: 

    0
  • Views: 

    467
  • Downloads: 

    116
Abstract: 

An efficient methodology is proposed to optimal design of structures for earthquake loading.In this methodology to reduce the optimization overall time, a serial integration of wavelet transforms, neural networks and evolutionary algorithms are employed. In order to reduce the computational work of the structural time history analysis, a discrete wavelet transform is used by means of which the number of points in the earthquake record is decreased. Also, an advanced meta model, called self-organizing generalized regression is employed to predict the time history responses. The optimization task is achieved by an evolutionary algorithm called virtual sub population method. A 6-storey space steel frame structure is designed for optimal weight for the El Centro earthquake induced loads. The numerical results demonstrate the efficiency and computational advantages of the proposed methodology.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 467

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 116 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2014
  • Volume: 

    28
  • Issue: 

    2
  • Pages: 

    394-405
Measures: 
  • Citations: 

    0
  • Views: 

    1490
  • Downloads: 

    0
Abstract: 

Forecasts of streamflows are required for many activities associated with the planning and operation of components in a water resource system. This paper demonstrates the application of two different intelligent approaches including adaptive neuro-fuzzy (ANFIS) based on grid partition and Gene Expression Programming (GEP) for the prediction of monthly streamflows. In the first part of the study, ANFIS and GEP models were used in one-month ahead streamflow forecasting and the results were evaluated. Monthly run-off data of 21 years from two stations, the Safakhaneh Station on the Sarough-Chay Stream and the Senteh Station on the Kherkherh-Chay Stream in the Zarrineh-rud Basin of Iran were used in the study. The effect of periodicity on the model’s forecasting performance was also investigated. By application of periodicity coefficient in GEP model, determination coefficient in the case of the best input combination for Safakhaneh and Senteh increased 0.19 and 0.25, respectively. In the second part of the study, the performance of the ANFIS and GEP techniques was tested for streamflow estimation using data from the nearby river. The results indicated that the GEP and ANFIS models could be employed successfully in forecasting streamflow. In this case, for the best input combination, root mean square error (RMSE) for ANFIS and GEP obtained equal to 4.88 and 4.89 respectively. However, GEP is superior to ANFIS in giving explicit expressions for the problem.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1490

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

DOESKEN B.

Issue Info: 
  • Year: 

    2005
  • Volume: 

    -
  • Issue: 

    2
  • Pages: 

    162-167
Measures: 
  • Citations: 

    1
  • Views: 

    120
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 120

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2006
  • Volume: 

    3
  • Issue: 

    3
  • Pages: 

    191-198
Measures: 
  • Citations: 

    1
  • Views: 

    133
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 133

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

BORHANI MOSTAFA

Issue Info: 
  • Year: 

    2019
  • Volume: 

    8
  • Issue: 

    4 (supplement)
  • Pages: 

    373-384
Measures: 
  • Citations: 

    0
  • Views: 

    298
  • Downloads: 

    0
Abstract: 

The main objective of this paper is to use a computational intelligence algorithm for preparing a mapping map that categorizes different patterns of identification of infected areas and changes in radiation pollution. In this paper, the use of the fuzzy inference system has been proposed to determine the degree of radiation contamination in the regions. The study uses ultra-high resolution spectrometry data to detect uranium. The research area includes well-known uranium deposits, including LambaPur-Peddagattu, Chitrial and Koppunuru. The high-resolution Spectrometry data collected for uranium exploration was used to estimate the average absorption rate in the air due to the distribution of females (potassium per cent and uranium and thorium per million) in these areas. Mamdanichr('39')s Fuzzy Inference System has also been used to determine the amount of radiation contamination in each region. The results showed that the efficiency of this method was 76% accurate for the detection of three levels of radiation contamination (no radiation contamination, low radiation exposure, medium radiation and high radiation pollution) and 89% for the overall identification of contaminated areas from non-polluted areas.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 298

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    13
  • Issue: 

    2
  • Pages: 

    309-327
Measures: 
  • Citations: 

    0
  • Views: 

    89
  • Downloads: 

    5
Abstract: 

2Introduction: Physical fatigue is one of the major risk factors for work-related musculoskeletal disorders and has many life and financial costs. The impact of physical/biomechanical, psychosocial, environmental, and individual risk factors on muscle fatigue is undeniable. The aim of this study is to model the phenomenon of muscle fatigue (as output) in the hand in work environments based on these risk factors (as input) using Soft computing methods. Material and Methods: In the first step, associated risk factors of fatigue for 156 subjects (in three job categories) were assessed using Copenhagen environmental, psychosocial, demographic, and Man-TRA tools. Then, the Roman-Liu equation and mean square amplitude of acceleration waves were used to measure fatigue with a dynamometer and a three-axis accelerometer, respectively. Finally, according to the nature of risk factors and the phenomenon of fatigue, six categories (24 methods) of supervised machine learning (SML) based on classification were selected. MatLab Software (MatLab R2017b, The Mathworks Inc., MA, U.S.A.) was used to fit the models using SML. Results: The best-fitted models in the first and second half of the work shift were obtained using support vector machine methods. Physical risk factors had a significant impact on physical fatigue. After filtering low-priority risk factors, in the first half of the work shift, the most optimal model had an accuracy of 71.8%, precision of 72.5%, sensitivity of 76.9%, specificity of 70.8%, and discrimination power equal to 73%. In the second half of the work shift, the accuracy, precision, sensitivity, and specificity of the optimized model were 60.3%, 57.5%, 50%, and 46.9%, respectively, and the discrimination power was obtained at about 62%. Conclusion: The fitted models for hand fatigue had acceptable performance in both sections of the shift but can still be optimized. Therefore, it is necessary for future studies to improve the quality of input and output data and include other dimensions affecting fatigue such as cognitive workload and type of work shift in future models.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 89

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 5 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

SZIDAROVSZKY F. | ZARGHAMI M.

Issue Info: 
  • Year: 

    2009
  • Volume: 

    6
  • Issue: 

    1
  • Pages: 

    15-25
Measures: 
  • Citations: 

    0
  • Views: 

    1161
  • Downloads: 

    158
Abstract: 

This paper will introduce a new method to obtain the order weights of the Ordered Weighted Averaging (OWA) operator. We will first show the relation between fuzzy quantifiers and neat OWA operators and then offer a new combination of them. Fuzzy quantifiers are applied for Soft computing in modeling the optimism degree of the decision maker. In using neat operators, the ordering of the inputs is not needed resulting in better computation efficiency. The theoretical results will be illustrated in a water resources management problem. This case study shows that more sensitive decisions are obtained by using the new method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1161

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 158 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

LANGIN C. | RAHIMI S.

Issue Info: 
  • Year: 

    2010
  • Volume: 

    1
  • Issue: 

    2
  • Pages: 

    133-145
Measures: 
  • Citations: 

    1
  • Views: 

    118
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 118

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

ROJAS I. | POMARES H.

Issue Info: 
  • Year: 

    2004
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    93-102
Measures: 
  • Citations: 

    1
  • Views: 

    186
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 186

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button